CARMIN/WOOD
 DESIGN

ENGINEER'S REPORT

for

Proposed Warehouse

4560 Clinton Street Town of West Seneca, Erie County, New York

Prepared for
\section*{Craig Tschetter}
4560 Clinton Street
West Seneca, NY 14224

Prepared by

Carmina Wood Design

487 Main Street, Suite 500
Buffalo, NY 14203
Telephone: (716) 842-3165
Fax: (716) 842-0263

March 2023

Table of Contents

Written Engineer's Report
Section 1 - Location \& Description
Section 2 - Water Service
Section 3 - Sanitary Sewer Service
Section 4 - Storm Sewer Service
Appendices
\section*{Appendix A Location Map}
Appendix B Sanitary Sewer and Water Demand Calculations
Appendix C Storm Sewer System Drainage Calculations
- Existing Runoff
- Proposed Runoff

Section 1 - Location \& Description

This project is the construction of a 9,000 sf metal panel warehouse building on the current developed 3.8 acre site located on the north side of Clinton Street in the Town of West Seneca. Construction will consist of the 9,000 sf warehouse building and include associated utility, lighting and landscaping improvements. Currently the site is developed with existing warehouse buildings and pavement. The proposed site development area to be disturbed for this project is approximately 0.9 acres when construction is completed.

Section 2 - Water Service

An existing water service currently serves the existing two warehouse buildings on site. A new water service will be installed and connected to the existing 12" ECWA water main on the north side of Clinton Street. The service will be a 6" Class 52 DI combined water service, then split into a 6" Class 52 DI fire service and a 2 " type ' k ' copper domestic service at the ROW line. Both DI services will continue into the proposed insulated enclosure. Inside the enclosure the 2 " domestic service will have a meter and RPZ and the 6 " fire service will have a RPDA. Heat will be provided in the enclosure to prevent freezing. Drainage due to testing or failure of the RPZ will be via gravity to the nearest drainage inlet. The owner will be responsible for keeping the drainage ports clear of snow and debris. Water inside the buildings will be used for typical domestic uses. The proposed 2" domestic service will continue from the hot box enclosure to the existing front building, where this service will connect to the existing inside the building

The buildings are not to be sprinklered. One private hydrant will be installed on site to ensure fire hose coverage not exceeding 400'.

Domestic Summary:
Peak Operating Demand: $\quad 24.20$ gpm
Water Main:
Static Pressure:
12" on Clinton Street
Friction Loss:
Loss through meter/RPZ:
62 psi (ECWA)
0.0 psi

Elevation Loss:
Pressure after RPZ:
13.4 psi
0.0 psi
49.0 psi

Repairs to all devices will be made during off hours, dual backflow preventers are not required. The site is not located in a 100-year flood plain. Disinfection of the water service following installation will be continuous feed, according to AWWA C-651, latest revision.

Section 3 - Sanitary Sewer Service

The proposed warehouse building will have a 6" SDR-35 PVC sanitary lateral at 1.0% minimum slope. This lateral will connect to an existing private sanitary sewer on site. This private sewer line connects into the existing Town of West Seneca sanitary sewer located on the north side of Clinton Street.

Design Parameters

Warehouse: $15 \mathrm{gal} /$ day/employee $\times 8 \mathrm{emp}=120 \mathrm{gpd}$
120 gpd * $4.47=536$ gpd *use peaking factor of 4.47
The hydraulic loading rate is per "Design Standards for Intermediate Sized Wastewater Treatment Systems" 2014, NYSDEC.

Section 4 - Storm Sewer Service

The existing site currently sheet drains to catch basins within the existing drive lane or sheet drains to an existing stormwater management pond, which connects to the drive lane drains. These ultimately discharge to an existing stormwater management area along the frontage of the property which outlets to the existing public storm sewer system along the north side of Clinton Street.

Stormwater runoff collected onsite as a result of the proposed warehouse building will be routed through the relocated dry stormwater pond connected by a series of catch basins and smooth interior HDPE stormwater pipe. This pond drains to the existing on site storm sewer via and existing 10" outlet pipe.

Detention Pond Summary:
Top of basin elevation $=667.00$
Bottom of basin elevation $=665.00$
100 -year storm storage volume $=18,896$ cf @ 587.99
Runoff Summary:

Event	Ex. Runoff (cfs)*	Pro. Runoff (cfs)*	Result (cfs)
1 -year	0.66	0.60	-0.06
10 -year	1.16	1.16	0.00
100 -year	1.75	1.72	-0.03

* Existing and proposed runoff flowrate is the rate controlled by the existing 10 " outlet pipe from the dry detention pond which discharges to the existing storm sewer system on site.

Appendix A
Location Map

Appendix B

Sanitary Sewer and Water Demand Calculations

CARMINA WOOD DESIGN
487 MAIN STREET, SUITE 500 BUFFALO, NEW YORK, 14203
(716) 842-3165

FAX (716) 842-0263

Project No.:
Project Name:
Project Address:
Subject:
Sheet:
22.346 Date: 3/22/2023 Proposed Warehouse
4560 Clinton Street West Seneca, NY Sanitary Sewer \& Water Demand Calcs 1 of 2

Sanitary Sewage Demand Calculations:

Proposed Warehouse
$15 \mathrm{gal} / \mathrm{d} / \mathrm{emp} \mathrm{x} \quad 8 \mathrm{emp}=-120 \mathrm{gpd}$ "use 15 gallons per employee per day

Find Peak Sanitary Demand:

Peaking Factor based on Population:
Total demand: $120 \mathrm{gpd} \quad / 100 \mathrm{gpcd} \quad=1$ per capita

Population $(P) \quad=\quad 1$ people
Peaking Factor : $(18+O ̈ P) /(4+$ ÖP $) \quad$ where P is in thousands
Peaking Factor = 4.47
Peak Sanitary Demand $=\quad 120 \times 4.47=10536$ gpd
$=\quad 0.001 \mathrm{MGD}$
$=\quad 0.001 \mathrm{cfs}$

CARMINA WOOD DESIGN	Project No.:	22.346	Date:
487 MAIN STREET, SUITE 500	Project Name:	Proposed Warehouse	
BUFFALO, NEW YORK, 14203	Project Address:	4560 Clinton Street West Seneca, NY	
(716) 842-3165	Subject:	Sanitary Sewer \& Water Demand Calcs	
FAX (716) 842-0263	Sheet:	2	of

Project No.: 22.346 Date: 3/22/2023
Project Name: Proposed Warehouse
Project Address: 4560 Clinton Street West Seneca, NY Sanitary Sewer \& Water Demand Calcs

2 of 2

Water Demand Calculations (domestic):

Proposed Warehouse
120 gpd $x 1.1=132$ gpd \quad *use 110% of sewage demand
*use 1.8 peaking factor and assume a 12 hour day

			132		gpm	X	1day/12hr		X	1hr/60min			$=$	0.18 gpm	
				0.18	gpm	x	1.8	$=$		0.33	gpm	$\mathrm{Q}_{\text {peak }}$			

Headlosses:

Water Demand Calculations (fire):

Proposed Townhouses
$Q=1,000$ gpd

Headlosses:

$\mathrm{Q}_{\text {peak }}$	$=$	1000 gpm			
Pipe	$=$	6 inch	Ductile Iron	C	$=140$

Lengt $=\quad 25$ LF (approx. distance from tap to RPDA in hot box)
$H_{L}=\frac{10.44 \mathrm{~L} \mathrm{Q}}{\mathrm{C}^{1.85}} \mathrm{D}^{4.800}=\frac{10.44(25)(1000)^{1.85}}{(140)^{1.05}(6)^{. .000}}=1.62 \mathrm{ft}=0.70 \mathrm{psi}$
Δ elev $=0 \mathrm{ft}=0.00 \mathrm{psi}$
Loss Through RPZ $=12.0 \mathrm{psi}$
Total Losses $=12.7$ psi
Static Pressure = 62.0 psi (per ECWA)
Residual Pressure after RPDA $=62-12.7=1=49.3 \mathrm{psi}$

Appendix C
Storm Sewer System Drainage Calculations

Existing Runoff

22.346 existing

Prepared by Carmina Wood Morris, PC
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Events for Pond 1P: Ex. Pond

Event	Inflow (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
1-Year	1.36	0.66	665.71	611
2-Year	1.80	0.86	665.84	822
5-Year	2.50	1.07	666.04	1,180
10-Year	3.15	1.16	666.21	1,575
25-Year	4.18	1.41	666.46	2,221
50-Year	5.13	1.58	666.66	2,855
100-Year	6.25	1.75	666.88	3,639

22.346 existing

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type II 24-hr	Default	24.00	1	1.87	2	
2	10-Year	Type II 24-hr	Default	24.00	1	3.14	2	
3	100-Year	Type II 24-hr	Default	24.00	1	5.23	2	

22.346 existing

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	CN	Description (subcatchment-numbers)
23,958	79	50-75\% Grass cover, Fair, HSG C (1S)
15,246	96	Gravel surface, HSG C (1S)
$\mathbf{3 9 , 2 0 4}$	$\mathbf{8 6}$	TOTAL AREA

22.346 existing

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
39,204	HSG C	1 S
0	HSG D	
0	Other	
39,204		TOTAL AREA

22.346 existing

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

HSG-A $(\mathrm{sq}-\mathrm{ft})$	HSG-B $(\mathrm{sq}-\mathrm{ft})$	HSG-C $(\mathrm{sq}-\mathrm{ft})$	HSG-D $(\mathrm{sq}-\mathrm{ft})$	Other $(\mathrm{sq}-\mathrm{ft})$	Total $(\mathrm{sq}-\mathrm{ft})$	Ground Cover
0	0	23,958	0	0	23,958	$50-75 \%$ Grass
						cover, Fair
0	0	15,246	0	0	15,246	Gravel surface
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 9 , 2 0 4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 9 , 2 0 4}$	TOTAL AREA

22.346 existing

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC
Page 6

Pipe Listing (all nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1 P	665.00	664.85	150.0	0.0010	0.013	0.0	10.0	0.0

Time span=0.00-60.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 6001$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1S: Existing
Runoff Area $=0.900$ ac 0.00% Impervious Runoff Depth $=0.75{ }^{\prime \prime}$
Flow Length=155' Slope=0.0100 '/' Tc=3.1 $\mathrm{min} \quad \mathrm{CN}=86$ Runoff=1.36 cfs $2,456 \mathrm{cf}$
Pond 1P: Ex. Pond
Peak Elev=665.71' Storage=611 cf Inflow=1.36 cfs 2,456 cf 10.0" Round Culvert n=0.013 L=150.0' $\mathrm{S}=0.0010$ '/' Outflow=0.66 cfs 2,456 cf

Total Runoff Area $=\mathbf{3 9 , 2 0 4}$ sf Runoff Volume $=\mathbf{2 , 4 5 6}$ cf Average Runoff Depth $=\mathbf{0 . 7 5 "}$ $\mathbf{1 0 0 . 0 0 \%}$ Pervious $=\mathbf{3 9 , 2 0 4}$ sf 0.00% Impervious $=0$ sf

Summary for Subcatchment 1S: Existing

Runoff $=\quad 1.36$ cfs @ 11.94 hrs, Volume $=\quad 2,456$ cf, Depth= $0.75^{\prime \prime}$

Routed to Pond 1P : Ex. Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=1.87"

$3.1 \quad 155$ Total

Subcatchment 1S: Existing

Summary for Pond 1P: Ex. Pond

Inflow Area $=$	$39,204 \mathrm{sf}$,	0.00% Impervious,	Inflow Depth $=0.75 "$	for $1-$ Year event
Inflow	$=$	$1.36 \mathrm{cfs} @$	11.94 hrs, Volume	$2,456 \mathrm{cf}$
Outflow	$=$	$0.66 \mathrm{cfs} @$	12.02 hrs, Volume $=$	$2,456 \mathrm{cf}$, Atten $=52 \%$, Lag $=4.5 \mathrm{~min}$
Primary	$=$	$0.66 \mathrm{cfs} @ 12.02 \mathrm{hrs}$, Volume $=$	$2,456 \mathrm{cf}$	

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Peak Elev= 665.71' @ 12.02 hrs Surf.Area= 1,455 sf Storage= 611 cf
Plug-Flow detention time= 26.4 min calculated for 2,456 cf (100\% of inflow)
Center-of-Mass det. time $=26.6 \mathrm{~min}(869.1-842.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	665.00^{\prime}	$4,100 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
665.00	275	0	0
666.00	1,945	1,110	1,110
667.00	4,035	2,990	4,100

Device	Routing	Invert	Outlet Devices
\#1	Primary	665.00'	10.0" Round Culvert
			$\mathrm{L}=150.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 665.00' / 664.85' S=0.0010'/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=0.66 cfs @ 12.02 hrs HW=665.71' (Free Discharge)
——1=Culvert (Barrel Controls 0.66 cfs @ 1.79 fps)

Pond 1P: Ex. Pond
Hydrograph

Time span $=0.00-60.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 6001$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1S: Existing
Runoff Area $=0.900$ ac 0.00% Impervious Runoff Depth $=1.78$ "
Flow Length=155' Slope=0.0100 '/' Tc=3.1 $\mathrm{min} \quad \mathrm{CN}=86$ Runoff $=3.15 \mathrm{cfs} 5,825 \mathrm{cf}$
Pond 1P: Ex. Pond
Peak Elev=666.21' Storage=1,575 cf Inflow=3.15 cfs 5,825 cf 10.0" Round Culvert n=0.013 L=150.0' $\mathrm{S}=0.0010$ '/' Outflow=1.16 cfs 5,825 cf

Total Runoff Area $=39,204$ sf Runoff Volume $=5,825$ cf Average Runoff Depth $=1.78$ "
$\mathbf{1 0 0 . 0 0 \%}$ Pervious $=\mathbf{3 9 , 2 0 4}$ sf 0.00% Impervious $=0$ sf

Summary for Subcatchment 1S: Existing

Runoff =
$=\quad 3.15 \mathrm{cfs} @ 11.94 \mathrm{hrs}$, Volume=
5,825 cf, Depth= 1.78 "
Routed to Pond 1P : Ex. Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.14"

$3.1 \quad 155$ Total

Subcatchment 1S: Existing

Summary for Pond 1P: Ex. Pond

Inflow Area =	39,204 sf,	0.00\% Impervious,	Inflow Depth $=1.78{ }^{\prime \prime}$ for 10-Year event
Inflow	3.15 cfs @	11.94 hrs , Volume=	5,825 cf
Outflow	1.16 cfs @	12.03 hrs , Volume=	$5,825 \mathrm{cf}$, Atten= 63%, Lag $=5.3 \mathrm{~min}$
Primary	1.16 cfs @	12.03 hrs , Volume=	5,825 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Peak Elev=666.21' @ 12.03 hrs Surf.Area= 2,393 sf Storage= 1,575 cf
Plug-Flow detention time $=22.7 \mathrm{~min}$ calculated for $5,825 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=22.7 \mathrm{~min}(840.2-817.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	665.00^{\prime}	$4,100 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
665.00	275	0	0
666.00	1,945	1,110	1,110
667.00	4,035	2,990	4,100

Device	Routing	Invert	Outlet Devices
\#1	Primary	665.00'	10.0" Round Culvert
			$\mathrm{L}=150.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 665.00' / 664.85' S=0.0010'/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.16 cfs @ 12.03 hrs HW=666.21' (Free Discharge)
—1=Culvert (Barrel Controls 1.16 cfs @ 2.13 fps)

Pond 1P: Ex. Pond
Hydrograph

Time span=0.00-60.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 6001$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment1S: Existing Runoff Area=0.900 ac 0.00\% Impervious Runoff Depth=3.68" Flow Length=155' Slope=0.0100 '/' Tc=3.1 min CN=86 Runoff=6.25 cfs $12,030 \mathrm{cf}$

Pond 1P: Ex. Pond
Peak Elev=666.88' Storage=3,639 cf Inflow=6.25 cfs 12,030 cf 10.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=150.0$ ' $\mathrm{S}=0.0010$ '//' Outflow=1.75 cfs $12,030 \mathrm{cf}$

Total Runoff Area $=39,204$ sf Runoff Volume $=12,030$ cf Average Runoff Depth $=3.68$ " $\mathbf{1 0 0 . 0 0 \%}$ Pervious $=\mathbf{3 9 , 2 0 4}$ sf 0.00% Impervious $=0$ sf

Summary for Subcatchment 1S: Existing

Runoff $=\quad 6.25$ cfs @ 11.94 hrs, Volume= 12,030 cf, Depth= $3.68{ }^{\prime \prime}$

Routed to Pond 1P : Ex. Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.23"

$3.1 \quad 155$ Total

Subcatchment 1S: Existing

Summary for Pond 1P: Ex. Pond

Inflow	39,204 sf,	0.00\% Impervious,	Inflow Depth = 3.68" for 100-Year event
Inflow	6.25 cfs @	11.94 hrs , Volume=	12,030 cf
Outflow	1.75 cfs @	12.04 hrs , Volume=	$12,030 \mathrm{cf}, \mathrm{Atten}=72 \%$, Lag $=6.0$ min
Primary	1.75 cfs @	12.04 hrs , Volume=	12,030 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Peak Elev=666.88' @ 12.04 hrs Surf.Area= 3,789 sf Storage= 3,639 cf
Plug-Flow detention time $=24.4 \mathrm{~min}$ calculated for $12,030 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= 24.3 min (821.3-796.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	665.00^{\prime}	$4,100 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
665.00	275	0	0
666.00	1,945	1,110	1,110
667.00	4,035	2,990	4,100

Device	Routing	Invert	Outlet Devices
\#1	Primary	665.00'	10.0" Round Culvert
			$\mathrm{L}=150.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 665.00' / 664.85' S=0.0010'/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.75 cfs @ 12.04 hrs HW=666.88' (Free Discharge)
-1=Culvert (Barrel Controls 1.75 cfs @ 3.21 fps)

Pond 1P: Ex. Pond

$\stackrel{\ominus}{N}$
 ueld סu!pedy

Proposed Runoff

Events for Pond 1P: Pond

Event	Inflow (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
1-Year	1.99	0.60	665.65	1,435
2-Year	2.49	0.79	665.76	1,776
5-Year	3.23	1.03	665.92	2,284
10-Year	3.90	1.16	666.06	2,767
25-Year	4.95	1.32	666.28	3,560
50-Year	5.91	1.52	666.47	4,278
100-Year	$\mathbf{7 . 0 2}$	$\mathbf{1 . 7 2}$	$\mathbf{6 6 6 . 6 9}$	$\mathbf{5 , 1 3 0}$

22.346 proposed

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type II 24-hr	Default	24.00	1	1.87	2	
2	10-Year	Type II 24-hr	Default	24.00	1	3.14	2	
3	100-Year	Type II 24-hr	Default	24.00	1	5.23	2	

22.346 proposed

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq-ft})$	CN	Description (subcatchment-numbers)
11,761	79	$50-75 \%$ Grass cover, Fair, HSG C (1S)
6,098	96	Gravel surface, HSG C (1S)
12,632	98	Paved parking, HSG C (1S)
8,712	98	Roofs, HSG C (1S)
39,204	92	TOTAL AREA

22.346 proposed

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC
Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
39,204	HSG C	1 S
0	HSG D	
0	Other	
39,204		TOTAL AREA

22.346 proposed

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

HSG-A $(\mathrm{sq}-\mathrm{ft})$	HSG-B $(\mathrm{sq-ft})$	HSG-C $(\mathrm{sq-ft})$	HSG-D $(\mathrm{sq}-\mathrm{ft})$	Other $(\mathrm{sq}-\mathrm{ft})$	Total $(\mathrm{sq}-\mathrm{ft})$	Ground Cover
0	0	11,761	0	0	11,761	$50-75 \%$ Grass
						cover, Fair
0	0	6,098	0	0	6,098	Gravel surface
0	0	12,632	0	0	12,632	Paved parking
0	0	8,712	0	0	8,712	Roofs
0	$\mathbf{0}$	$\mathbf{0}, 204$	$\mathbf{0}$	$\mathbf{3 9 , 2 0 4}$	TOTAL AREA	

22.346 proposed

Prepared by Carmina Wood Morris, PC
Printed 3/21/2023
HydroCAD® 10.20-2g s/n 05019 © 2022 HydroCAD Software Solutions LLC
Page 6

Pipe Listing (all nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1 S	0.00	0.00	155.0	0.0030	0.013	0.0	8.0	0.0
2	1 P	665.00	664.85	125.0	0.0012	0.013	0.0	10.0	0.0

Time span=0.00-60.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 6001$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed

Pond 1P: Pond

Runoff Area=0.900 ac 54.44% Impervious Runoff Depth=1.12" Flow Length=225' Tc=2.7 min CN=92 Runoff=1.99 cfs 3,663 cf

Peak Elev=665.65' Storage=1,435 cf Inflow=1.99 cfs $3,663 \mathrm{cf}$ 10.0" Round Culvert $n=0.013 \quad \mathrm{~L}=125.0^{\prime} \quad \mathrm{S}=0.0012$ '// Outflow= $=0.60 \mathrm{cfs} 3,650 \mathrm{cf}$

Total Runoff Area $=\mathbf{3 9}, 204$ sf Runoff Volume $=3,663$ cf Average Runoff Depth $=1.12$ " 45.56% Pervious $=17,860$ sf 54.44% Impervious $=21,344 \mathbf{~ s f}$

Summary for Subcatchment 1S: Proposed

[47] Hint: Peak is 301% of capacity of segment \#2
Runoff = 1.99 cfs @ 11.93 hrs, Volume= 3,663 cf, Depth= 1.12"
Routed to Pond 1P : Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Type II 24-hr 1-Year Rainfall=1.87"

Subcatchment 1S: Proposed

Summary for Pond 1P: Pond

Inflow Area =	39,204	54.44\% Impervious	Inflow Depth = 1.12" for 1-Year event
Inflow	1.99 cfs @	11.93 hrs , Volume=	3,663 cf
Outflow	0.60 cfs @	12.03 hrs , Volume=	$3,650 \mathrm{cf}$, Atten= 70\%, Lag= 5.6 min
Primary	0.60 cfs @	12.03 hrs , Volume=	3,650 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Peak Elev= 665.65' @ 12.03 hrs Surf.Area= 2,831 sf Storage= 1,435 cf
Plug-Flow detention time= 97.3 min calculated for 3,650 cf (100\% of inflow)
Center-of-Mass det. time= 95.1 min (907.6-812.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	665.00^{\prime}	$6,428 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
665.00	1,615	0	0
666.00	3,500	2,558	2,558
667.00	4,240	3,870	6,428

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	665.00^{\prime}	$10 . \mathbf{N}^{\prime \prime}$ Round Culvert
		$\mathrm{L}=125.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet / Outlet Invert= $665.00^{\prime} / 664.85^{\prime} \quad \mathrm{S}=0.0012^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf	

Primary OutFlow Max=0.60 cfs @ 12.03 hrs HW=665.65' (Free Discharge)
—1=Culvert (Barrel Controls 0.60 cfs @ 1.84 fps)

Pond 1P: Pond

Time span=0.00-60.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 6001$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed

Pond 1P: Pond

Runoff Area=0.900 ac 54.44\% Impervious Runoff Depth=2.29" Flow Length=225' Tc=2.7 min CN=92 Runoff=3.90 cfs $7,493 \mathrm{cf}$

Peak Elev=666.06' Storage=2,767 cf Inflow=3.90 cfs 7,493 cf 10.0" Round Culvert $n=0.013$ L=125.0' $S=0.0012$ '/' Outflow=1.16 cfs 7,480 cf

Total Runoff Area $=\mathbf{3 9}, 204$ sf Runoff Volume $=7,493$ cf Average Runoff Depth $=2.29$ " 45.56% Pervious $=17,860$ sf 54.44% Impervious $=21,344$ sf

Summary for Subcatchment 1S: Proposed

[47] Hint: Peak is 590% of capacity of segment \#2
Runoff = 3.90 cfs @ 11.93 hrs, Volume= $\quad 7,493 \mathrm{cf}$, Depth= 2.29"
Routed to Pond 1P : Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=3.14"

Subcatchment 1S: Proposed

Summary for Pond 1P: Pond

Inflow Area =	39,204	54.44\% Impervious,	Inflow Depth = 2.29" for 10-Year event
Inflow	3.90 cfs @	11.93 hrs , Volume=	7,493 cf
Outflow	1.16 cfs @	12.03 hrs , Volume=	7,480 cf, Atten= 70\%, Lag= 5.7 min
Primary	1.16 cfs @	12.03 hrs , Volume=	7,480 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Peak Elev=666.06' @ 12.03 hrs Surf.Area= 3,544 sf Storage= 2,767 cf
Plug-Flow detention time= 72.2 min calculated for $7,479 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= 71.3 min (863.6-792.2)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	665.00^{\prime}	$6,428 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
665.00	1,615	0	0
666.00	3,500	2,558	2,558
667.00	4,240	3,870	6,428

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	665.00^{\prime}	$\mathbf{1 0 . 0 " \text { Round Culvert }}$
		$L=125.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet / Outlet Invert= $665.00^{\prime} / 664.85^{\prime} \quad \mathrm{S}=0.0012^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf	

Primary OutFlow Max=1.16 cfs @ 12.03 hrs HW=666.06' (Free Discharge)
L-1=Culvert (Barrel Controls 1.16 cfs @ 2.17 fps)

Pond 1P: Pond

Time span=0.00-60.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 6001$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Proposed

Pond 1P: Pond

Runoff Area=0.900 ac 54.44\% Impervious Runoff Depth=4.31" Flow Length=225' Tc=2.7 min CN=92 Runoff=7.02 cfs 14,094 cf

Peak Elev=666.69' Storage=5,130 cf Inflow=7.02 cfs 14,094 cf 10.0" Round Culvert n=0.013 L=125.0' $S=0.0012$ '/' Outflow=1.72 cfs 14,080 cf

Total Runoff Area $=39,204$ sf Runoff Volume $=14,094$ cf Average Runoff Depth $=4.31^{\prime \prime}$ 45.56% Pervious $=17,860$ sf 54.44% Impervious $=21,344$ sf

Summary for Subcatchment 1S: Proposed

[47] Hint: Peak is 1061% of capacity of segment \#2
Runoff $=\quad 7.02$ cfs @ 11.93 hrs, Volume= 14,094 cf, Depth= 4.31"
Routed to Pond 1P : Pond
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=5.23"

Subcatchment 1S: Proposed

Summary for Pond 1P: Pond

low Area =	39,204	54.44\% Impervious,	Inflow Depth = 4.31" for 100-Year event
Inflow	7.02 cfs @	11.93 hrs , Volume=	14,094 cf
Outflow	1.72 cfs @	12.03 hrs , Volume=	14,080 cf, Atten= 76\%, Lag= 6.2 min
Primary	1.72 cfs @	12.03 hrs , Volume=	14,080 cf

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Peak Elev=666.69' @ 12.03 hrs Surf.Area= 4,007 sf Storage= 5,130 cf
Plug-Flow detention time= 61.7 min calculated for 14,078 cf (100% of inflow)
Center-of-Mass det. time= 61.4 min (836.3-774.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	665.00^{\prime}	$6,428 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
665.00	1,615	0	0
666.00	3,500	2,558	2,558
667.00	4,240	3,870	6,428

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	665.00^{\prime}	$\mathbf{1 0 . 0 " \text { Round Culvert }}$
		$L=125.0^{\prime}$ CPP, square edge headwall, Ke= $=0.500$	
		Inlet / Outlet Invert= $665.00^{\prime} / 664.85^{\prime} \quad \mathrm{S}=0.0012^{\prime} / /^{\prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.55 sf	

Primary OutFlow Max=1.72 cfs @ 12.03 hrs HW=666.68' (Free Discharge)
L-1=Culvert (Barrel Controls 1.72 cfs @ 3.15 fps)

Pond 1P: Pond

